Chapter 11 Circumference, Area, and Volume

11.1 Circumference and Arc Length

- 11.2 Areas of Circles and Sectors
- 11.3 Areas of Polygons
- 11.4 Three-Dimensional Figures
- 11.5 Volumes of Prisms and Cylinders
- 11.6 Volumes of Pyramids
- 11.7 Surface Areas and Volumes of Cones
- 11.8 Surface Areas and Volumes of Spheres

Circumference

The distance around the circle.

Consider a regular polygon inscribed inside a circle.

Increase the number of sides of the polygon.

The ratio of perimeter (C) over diameter (d) approaches π . $\frac{C}{d} = 3.1415926...$

Circumference

The circumference is the diameter times π .

More commonly, it is two times radius times π .

Arc Length

The arc length is a portion of the circumference of a circle. Use the arc (in degrees) to find its length.

Calculate values

11.1 Circumference and Arc Length Real World

A runner runs around the track below. The ends of the track are semicircle arcs with each radius listed. How far is one lap around the track?

11.1 Circumference and Arc Length Using Circumference

The circumference of a circle is $2\pi r$ If the radius is equal to 1 (smaller red circle),

then the circumference is 2π –

This is called the **unit circle** (r = 1).

The arc length of CD

 $= circumference\left(\frac{m\widehat{CD}}{360^{\circ}}\right)$ $= 2\pi \left(\frac{m\widehat{CD}}{360^{\circ}}\right)$

The arc length of $\widehat{CD} = 2\pi \left(\frac{\widehat{mCD}}{360^\circ}\right)$

11.1 Circumference and Arc Length Using Circumference

All circles are similar, so their dimensions are proportional.

11.1 Circumference and Arc Length Radians

- Radians is the length around the *unit circle* (r = 1).
- 2π radians is the circumference of a *unit circle*.
- Therefore, equivalent units are $360^{\circ} = 2\pi$ radians or $\frac{2\pi}{360^{\circ}}$

11.1 Circumference and Arc Length Radians

• Converting from degrees to radians

degrees $\left(\frac{2\pi}{360^\circ}\right)$ = radians

Converting from radians to degrees

radians
$$\left(\frac{360^{\circ}}{2\pi}\right)$$
 = degrees

Examples

a) Convert 45° to radians

degrees $\left(\frac{2\pi}{360^{\circ}}\right)$ = radians radians $\left(\frac{360^{\circ}}{2\pi}\right)$ = degrees

b) Convert $\frac{3\pi}{2}$ radians to degrees

c) Calculate the arc length of an arc on a circle with radius of 5 meters and arc angle of $\frac{2\pi}{3}$ radians.